Herbicide Use Has Resulted in a Significant Reduction in Energy Use

U.S. Pesticide Benefits Case Study No. 32, May 2011
Leonard Gianessi and Ashley Williams

The cost of fuel for farm operations remained inexpensive through the 1950s and '60s, but increased dramatically following the energy price shocks of 1973-74 and 1980-81. Fuel price has increased dramatically in recent years (Figure 1). Energy price increases significantly altered the pattern of energy use on U.S. farms, resulting in a large decrease in direct energy use (Figure 2). Since the late 1970s, the direct use of energy by agriculture has declined by 26%, while the energy used to produce fertilizers and pesticides has declined by 31% [1].

The decline in agricultural energy use resulted in a significant reduction in agriculture’s share of the nation’s total energy usage. In 1978, the total direct and indirect energy used in agriculture accounted for about 5% of U.S. energy use [2]. Currently, the direct energy use in U.S. agricultural production represents about 1% of total U.S. energy consumption while the indirect energy use to manufacture the pesticides and fertilizers represents about 0.5% [1].

Agriculture has made dramatic efficiency gains in energy use. Since 1973, farm output has grown 63% while direct energy consumption has declined 26%. As a result, direct energy use per unit of agricultural output is 50% less today than it was in the 1970s (Figure 3).

Herbicides have been a main factor for the decrease in energy use [4]. The energy price increases stimulated an increase in conservation tillage, reducing fuel consumption relative to conventional tillage [5]. The additional energy embodied in herbicide use in reduced-tillage systems is much less than the energy conserved by reduced tillage [6]. A moldboard plow consumes 17 times more diesel fuel per acre than an herbicide sprayer. A row-crop cultivator requires 0.4 gallon/acre per trip while a herbicide sprayer requires 0.1 gallon/acre [7].

The Conservation Tillage Information Center (CTIC) has estimated a savings of 3.9 gallons of direct fuel use per acre by going from conventional tillage to no-till [8]. By 2008, the number of no-till acres reached 88 million, implying an annual fuel savings of 343 million gallons.

References